1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65/*
Pattern:
Summary: Backtracking and checking all possible words of max len
Time: O(2^n)
*/
int n;
bool solve(int idx, string s, int len, unordered_set<string>& dict) {
if (idx >= n)
return true;
for (int i = 1; i <= len && idx + i <= n; i++) {
string temp = s.substr(idx, i);
if (dict.find(temp) != dict.end() && solve(idx + i, s, len, dict)) {
return true;
}
}
return false;
}
bool wordBreak(string s, vector<string>& wordDict) {
n = s.length();
unordered_set<string> dict(wordDict.begin(), wordDict.end());
int max_len = 0;
for (auto &word : wordDict) {
max_len = max((int)word.length(), max_len);
}
return solve(0, s, max_len, dict);
}
/*
Pattern: Segmentation DP
Summary: Backtracking with Memoization
Time: O(n^2)
*/
int n;
int dp[301];
bool solve(int idx, string s, int len, unordered_set<string>& dict) {
if (idx >= n)
return true;
if(dp[idx] != -1) return dp[idx];
for (int i = 1; i <= len && idx + i <= n; i++) {
string temp = s.substr(idx, i);
if (dict.find(temp) != dict.end() && solve(idx + i, s, len, dict)) {
return dp[idx] = true;
}
}
return dp[idx] = false;
}
bool wordBreak(string s, vector<string>& wordDict) {
memset(dp,-1, sizeof(dp));
n = s.length();
unordered_set<string> dict(wordDict.begin(), wordDict.end());
int max_len = 0;
for (auto word : wordDict) {
max_len = max((int)word.length(), max_len);
}
return solve(0, s, max_len, dict);
}